Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Microbiol ; 9(2): 336-345, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316926

RESUMO

microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Humanos , Metabolômica/métodos , Bases de Dados Factuais
2.
Mar Environ Res ; 194: 106303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150785

RESUMO

The tropical ascidian Eudistoma vannamei, endemic to the northeastern coast of Brazil, is considered a prolific source of secondary metabolites and hosts Actinomycetota that produce bioactive compounds. Herein, we used an omics approach to study the ascidian as a holobiont, including the microbial diversity through 16S rRNA gene sequencing and metabolite production using mass spectrometry-based metabolomics. Gene sequencing analysis revealed all samples of E. vannamei shared about 50% of the observed ASVs, and Pseudomonadota (50.7%), Planctomycetota (9.58%), Actinomycetota (10.34%), Bacteroidota (12.05%) were the most abundant bacterial phyla. Analysis of tandem mass spectrometry (MS/MS) data allowed annotation of compounds, including phospholipids, amino acids, and pyrimidine alkaloids, such as staurosporine, a member of a well-known chemical class recognized as a microbial metabolite. Isolated bacteria, mainly belonging to Streptomyces and Micromonospora genera, were cultivated and extracted with ethyl acetate. MS/MS analysis of bacterial extracts allowed annotation of compounds not detected in the ascidian tissue, including marineosin and dihydroergotamine, yielding about 30% overlapped ions between host and isolated bacteria. This study reveals E. vannamei as a rich source of microbial and chemical diversity and, furthermore, highlights the importance of omic tools for a comprehensive investigation of holobiont systems.


Assuntos
Urocordados , Animais , Filogenia , RNA Ribossômico 16S/genética , Espectrometria de Massas em Tandem , Bactérias/genética
3.
Res Sq ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577622

RESUMO

MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.

4.
Antimicrob Agents Chemother ; 67(3): e0075922, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36815840

RESUMO

Cryptococcosis therapy is often limited by toxicity problems, antifungal tolerance, and high costs. Studies approaching chalcogen compounds, especially those containing selenium, have shown promising antifungal activity against pathogenic species. This work aimed to evaluate the in vitro and in vivo antifungal potential of organoselenium compounds against Cryptococcus neoformans. The lead compound LQA_78 had an inhibitory effect on C. neoformans planktonic cells and dispersed cells from mature biofilms at similar concentrations. The fungal growth inhibition led to an increase in budding cells arrested in the G2/M phase, but the compound did not significantly affect structural cell wall components or chitinase activity, an enzyme that regulates the dynamics of the cell wall. The compound also inhibited titan cell (Tc) and enlarged capsule yeast (NcC) growth and reduced the body diameter and capsule thickness associated with increased capsular permeability of both virulent morphotypes. LQA_78 also reduced fungal melanization through laccase activity inhibition. The fungicidal activity was observed at higher concentrations (16 to 64 µg/mL) and may be associated with augmented plasma membrane permeability, ROS production, and loss of mitochondrial membrane potential. While LQA_78 is a nonhemolytic compound, its cytotoxic effects were cell type dependent, exhibiting no toxicity on Galleria mellonella larvae at a dose ≤46.5 mg/kg. LQA_78 treatment of larvae infected with C. neoformans effectively reduced the fungal burden and inhibited virulent morphotype formation. To conclude, LQA_78 displays fungicidal action and inhibits virulence factors of C. neoformans. Our results highlight the potential use of LQA_78 as a lead molecule for developing novel pharmaceuticals for treating cryptococcosis.


Assuntos
Antifúngicos , Cryptococcus neoformans , Animais , Antifúngicos/uso terapêutico , Cryptococcus neoformans/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/microbiologia , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Fatores de Virulência/metabolismo
5.
Chem Biol Interact ; 371: 110342, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634904

RESUMO

DNA-targeting agents have a significant clinical use, although toxicity remains an issue that plays against their widespread application. Understanding the mechanism of action and DNA damage response elicited by such compounds might contribute to the improvement of their use in anticancer chemotherapy. In a previous study, our research group characterized a new DNA-targeting agent - pradimicin-IRD. Since DNA-targeting agents and DNA repair are close-related subjects, the present study used in silico-modelling and a transcriptomic approach seeking to characterize the DNA repair pathways activated in HCT 116 cells following pradimicin-IRD treatment. Molecular docking analysis showed pradimicin-IRD as a DNA intercalating agent and a potential inhibitor of DNA-binding proteins. Furthermore, the transcriptomic study highlighted DNA repair functions related to genes modulated by pradimicin-IRD, such as nucleotide excision repair, telomeres maintenance and double-strand break repair. When validating these functions, PCNA protein levels decreased after exposure to pradimicin. Furthermore, molecular docking analysis suggested DNA-pradimicin-PCNA interaction. In addition, hTERT and POLH showed reduced mRNA levels after 6 h of treatment with pradimicin-IRD. Moreover, POLH-deficient cells displayed higher resistance to pradimicin-IRD than POLH-proficient cells and the compound prevented formation of the POLH/DNA complex (molecular docking). Since the modulation of DNA repair genes by pradimicin-IRD is TP53-independent, unlike doxorubicin, dissimilarities between the mechanism of action and the DNA damage response of pradimicin-IRD and doxorubicin open new insights for further studies of pradimicin-IRD as a new antineoplastic compound.


Assuntos
Antineoplásicos , Humanos , Simulação de Acoplamento Molecular , Antígeno Nuclear de Célula em Proliferação , Antineoplásicos/farmacologia , Reparo do DNA , DNA , Doxorrubicina/farmacologia , Dano ao DNA
6.
Cancers (Basel) ; 14(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36551566

RESUMO

Despite the advances in understanding the biology of hematologic neoplasms which has resulted in the approval of new drugs, the therapeutic options are still scarce for relapsed/refractory patients. Eribulin is a unique microtubule inhibitor that is currently being used in the therapy for metastatic breast cancer and soft tissue tumors. Here, we uncover eribulin's cellular and molecular effects in a molecularly heterogeneous panel of hematologic neoplasms. Eribulin reduced cell viability and clonogenicity and promoted apoptosis and cell cycle arrest. The minimal effects of eribulin observed in the normal leukocytes suggested selectivity for malignant blood cells. In the molecular scenario, eribulin induces DNA damage and apoptosis markers. The ABCB1, ABCC1, p-AKT, p-NFκB, and NFκB levels were associated with responsiveness to eribulin in blood cancer cells, and a resistance eribulin-related target score was constructed. Combining eribulin with elacridar (a P-glycoprotein inhibitor), but not with PDTC (an NFkB inhibitor), increases eribulin-induced apoptosis in leukemia cells. In conclusion, our data indicate that eribulin leads to mitotic catastrophe and cell death in blood cancer cells. The expression and activation of MDR1, PI3K/AKT, and the NFκB-related targets may be biomarkers of the eribulin response, and the combined treatment of eribulin and elacridar may overcome drug resistance in these diseases.

7.
Life Sci ; 308: 120911, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36030982

RESUMO

AIMS: Colorectal cancer (CRC) is a very heterogeneous disease. One of its hallmarks is the dysregulation of protein kinases, which leads to molecular events related to carcinogenesis. Hence, kinase inhibitors have been developed and are a new strategy with promising potential for CRC therapy. This study aims to explore AD80, a multikinase inhibitor, as a drug option for CRC, with evaluation of the PI3K/AKT/mTOR and MAPK (ERK1/2) status of CRC cells' panel and the cytotoxicity of AD80 in those cells, as well as in normal colon cells. MAIN METHODS: Cellular and molecular mechanisms, such as clonogenicity, cell cycle, morphology, protein and mRNA expression, were investigated in CRC cells after AD80 exposure. KEY FINDINGS: Results show that PI3K/AKT/mTOR and MAPK signaling pathways are upregulated in CRC cellular models, with increased phosphorylation of mTOR, P70S6K, S6RP, 4EBP1, and ERK1/2. Hence, AD80 selectively reduces cell viability of CRC cells. Therefore, the antitumor mechanisms of AD80, such as clonogenicity inhibition (reduction of colony number and size), G2/M arrest (increased G2/M population, and CDKN1B mRNA expression), DNA damage (increased H2AX and ERK1/2 phosphorylation, and CDKN1A and GADD45A mRNA expression), apoptosis (increased PARP1 cleavage, and BAX, PMAIP1, BBC3 mRNA expression) and inhibition of S6RP phosphorylation were validated in CRC model. SIGNIFICANCE: Our findings reinforce kinases as promising cancer therapeutic targets for the treatment of colorectal cancer, suggesting AD80 as a drug candidate.


Assuntos
Neoplasias Colorretais , Proteínas Quinases S6 Ribossômicas 70-kDa , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína X Associada a bcl-2
8.
J Nat Prod ; 85(9): 2127-2134, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36044031

RESUMO

Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.


Assuntos
Produtos Biológicos , Ciclotídeos , Proteínas de Plantas , Violaceae , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Brasil , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Espectrometria de Massas em Tandem , Violaceae/química
9.
Mar Drugs ; 20(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35621952

RESUMO

The bioactive natural product seriniquinone was discovered as a potential melanoma drug, which was produced by the as-yet-undescribed marine bacterium of the rare genus Serinicoccus. As part of a long-term research program aimed at the discovery of new agents for the treatment of cancer, seriniquinone revealed remarkable in vitro activity against a diversity of cancer cell lines in the US National Cancer Institute 60-cell line screening. Target deconvolution studies defined the seriniquinones as a new class of melanoma-selective agents that act in part by targeting dermcidin (DCD). The targeted DCD peptide has been recently examined and defined as a "pro-survival peptide" in cancer cells. While DCD was first isolated from human skin and thought to be only an antimicrobial peptide, currently DCD has been also identified as a peptide associated with the survival of cancer cells, through what is believed to be a disulfide-based conjugation with proteins that would normally induce apoptosis. However, the significantly enhanced potency of seriniquinone was of particular interest against the melanoma cell lines assessed in the NCI 60-cell line panel. This observed selectivity provided a driving force that resulted in a multidimensional program for the discovery of a usable drug with a new anticancer target and, therefore, a novel mode of action. Here, we provided an overview of the discovery and development efforts to date.


Assuntos
Dermocidinas , Melanoma , Neoplasias Cutâneas , Linhagem Celular Tumoral , Dermocidinas/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo
10.
Invest New Drugs ; 40(2): 438-452, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34837603

RESUMO

Stathmin 1 (STMN1) is a microtubule-destabilizing protein highly expressed in hematological malignancies and involved in proliferation and differentiation. Although a previous study found that the PML-RARα fusion protein, which contributes to the pathophysiology of acute promyelocytic leukemia (APL), positively regulates STMN1 at the transcription and protein activity levels, little is known about the role of STMN1 in APL. In this study, we aimed to investigate the STMN1 expression levels and their associations with laboratory, clinical, and genomic data in APL patients. We also assessed the dynamics of STMN1 expression during myeloid cell differentiation and cell cycle progression, and the cellular effects of STMN1 silencing and pharmacological effects of microtubule-stabilizing drugs on APL cells. We found that STMN1 transcripts were significantly increased in samples from APL patients compared with those of healthy donors (all p < 0.05). However, this had no effect on clinical outcomes. STMN1 expression was associated with proliferation- and metabolism-related gene signatures in APL. Our data confirmed that STMN1 was highly expressed in early hematopoietic progenitors and reduced during cell differentiation, including the ATRA-induced granulocytic differentiation model. STMN1 phosphorylation was predominant in a pool of mitosis-enriched APL cells. In NB4 and NB4-R2 cells, STMN1 knockdown decreased autonomous cell growth (all p < 0.05) but did not impact ATRA-induced apoptosis and differentiation. Finally, treatment with paclitaxel (as a single agent or combined with ATRA) induced microtubule stabilization, resulting in mitotic catastrophe with repercussions for cell viability, even in ATRA-resistant APL cells. This study provides new insights into the STMN1 functions and microtubule dynamics in APL.


Assuntos
Leucemia Promielocítica Aguda , Diferenciação Celular , Proliferação de Células , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Mitose , Proteínas de Fusão Oncogênica/genética , Paclitaxel , Estatmina/genética
11.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221345, 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394011

RESUMO

Abstract The present review aims the discussion of the impact of the bioprospection initiative developed by the projects associated to BIOprospecTA, a subprogram of the program BIOTA, supported by FAPESP. This review brings a summary of the main results produced by the projects investigating natural products (NPs) from non-plants organisms, as examples of the success of this initiative, focusing on the progresses achieved by the projects related to NPs from macroalgae, marine invertebrates, arthropods and associated microorganisms. Macroalgae are one of the most studied groups in Brazil with the isolation of many bioactive compounds including lipids, carotenoids, phycocolloids, lectins, mycosporine-like amino acids and halogenated compounds. Marine invertebrates and associated microorganisms have been more systematically studied in the last thirty years, revealing unique compounds, with potent biological activities. The venoms of Hymenopteran insects were also extensively studied, resulting in the identification of hundreds of peptides, which were used to create a chemical library that contributed for the identification of leader models for the development of antifungal, antiparasitic, and anticancer compounds. The built knowledge of Hymenopteran venoms permitted the development of an equine hyperimmune serum anti honeybee venom. Amongst the microorganisms associated with insects the bioprospecting strategy was to understand the molecular basis of intra- and interspecies interactions (Chemical Ecology), translating this knowledge to possible biotechnological applications. The results discussed here reinforce the importance of BIOprospecTA program on the development of research with highly innovative potential in Brazil.


Resumo A presente revisão discute o impacto das iniciativas de bioprospecção desenvolvidas pelos projetos associados ao BIOprospecTA, subprograma do programa BIOTA, apoiado pela FAPESP. Esta revisão traz um resumo dos principais resultados produzidos pelos projetos de investigação de produtos naturais (PNs) de organismos não vegetais, como exemplos do sucesso desta iniciativa, com foco nos avanços alcançados pelos projetos relacionados a PNs de macroalgas, invertebrados marinhos, artrópodes e microrganismos associados. As macroalgas são um dos grupos mais estudados no Brasil com o isolamento de muitas substâncias bioativas, incluindo lipídios, carotenóides, ficocolóides, lectinas, aminoácidos do tipo micosporina e substâncias halogenadas. Invertebrados marinhos e microrganismos associados têm sido estudados de forma mais sistemática nos últimos trinta anos, revelando substâncias únicas, com potentes atividades biológicas. Os venenos de insetos himenópteros também foram amplamente estudados, resultando na identificação de centenas de peptídeos, que foram utilizados para criar uma biblioteca química que contribuiu para a identificação de modelos para o desenvolvimento de substâncias antifúngicas, antiparasitárias e anticancerígenas. O conhecimento construído dos venenos de himenópteros permitiu o desenvolvimento de um soro equino anti-peçonha de abelha. Dentre os microrganismos associados a insetos, a estratégia de bioprospecção foi compreender as bases moleculares das interações intra e interespécies (Ecologia Química), traduzindo esse conhecimento para possíveis aplicações biotecnológicas. Os resultados aqui discutidos reforçam a importância do programa BIOprospecTA no desenvolvimento de pesquisas com alto potencial inovador no Brasil.

12.
Toxicol In Vitro ; 76: 105207, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34216723

RESUMO

Acute myeloid leukemia (AML) belongs to a group of hematological cancer whose relapse cases are often associated with chemoresistance that impairs treatment success and contributes to a poor outcome. For this reason, there is an urgent need for the development of new therapeutic strategies. Herein, we explore the combination of venetoclax, a BCL2 inhibitor, and embelin, an XIAP inhibitor, in the AML cell lines. Combinatory treatment of venetoclax and embelin potentiated cytotoxic effects of these drugs, demonstrating that both in combination present lower IC50 values than single treatment of either venetoclax or embelin alone in both cell lines analyzed. The combinatory treatment further increased the apoptosis-inducing properties of both compounds. Computer simulations suggest that embelin binds to both BIR2 and BIR3 domains of XIAP, reinforcing this inhibitory apoptosis protein as an embelin target. Although all AML cell lines presented similar basal levels of XIAP, the combinatory treatment effectively inhibited XIAP expression in OCI-AML3 cells. In conclusion, the inhibition of both apoptosis inhibitory players, BCL2 and XIAP, by venetoclax and embelin, respectively, potentiated their cytotoxic effects in AML cell lines.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sulfonamidas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
13.
Cell Oncol (Dordr) ; 44(5): 1105-1117, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34196912

RESUMO

PURPOSE: Despite great advances that have been made in the understanding of the molecular complexity of acute myeloid leukemia (AML), very little has been translated into new therapies. Here, we set out to investigate the impact of cytoskeleton regulatory genes on clinical outcomes and their potential as therapeutic targets in AML. METHODS: Gene expression and clinical data were retrieved from The Cancer Genome Atlas (TCGA) AML study and used for survival and functional genomics analyses. For pharmacological tests, AML cells were exposed to ezrin (EZR) inhibitors and submitted to several cellular and molecular assays. RESULTS: High EZR expression was identified as an independent marker of worse outcomes in AML patients from the TCGA cohort (p < 0.05). Functional genomics analyses suggested that EZR contributes to responses to stimuli and signal transduction pathways in leukemia cells. EZR pharmacological inhibition with NSC305787 and NSC668394 reduced viability, proliferation, autonomous clonal growth, and cell cycle progression in AML cells (p < 0.05). NSC305787 had a greater potency and efficiency than NSC668394 in leukemia models. At the molecular level, EZR inhibitors reduced EZR, S6 ribosomal protein and 4EBP1 phosphorylation, and induced PARP1 cleavage in AML cells. NSC305787, but not NSC668394, favored a gene network involving cell cycle arrest and apoptosis in Kasumi 1 AML cells. CONCLUSIONS: From our data we conclude that EZR expression may serve as a prognostic factor in AML. Our preclinical findings indicate that ezrin inhibitors may be employed as a putative novel class of AML targeting drugs.


Assuntos
Biomarcadores Tumorais/genética , Proteínas do Citoesqueleto/genética , Citoesqueleto/metabolismo , Regulação Leucêmica da Expressão Gênica , Genes Reguladores/genética , Leucemia Mieloide/genética , Doença Aguda , Adamantano/análogos & derivados , Adamantano/farmacologia , Adulto , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteínas do Citoesqueleto/antagonistas & inibidores , Proteínas do Citoesqueleto/metabolismo , Intervalo Livre de Doença , Feminino , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide/diagnóstico , Leucemia Mieloide/metabolismo , Masculino , Fenóis/farmacologia , Prognóstico , Quinolinas/farmacologia , Quinolonas/farmacologia , Células THP-1 , Células U937
14.
Oncol Lett ; 22(2): 610, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34188712

RESUMO

Gliomas are the most common type of primary central nervous system tumors and despite great advances in understanding the molecular basis of the disease very few new therapies have been developed. Reversine, a synthetic purine analog, is a multikinase inhibitor that targets aurora kinase A (AURKA) and aurora kinase B (AURKB). In gliomas, a high expression of AURKA or AURKB is associated with a malignant phenotype and a poor prognosis. The present study investigated reversine-related cellular and molecular antiglioma effects in HOG, T98G and U251MG cell lines. Gene and protein expression were assessed by reverse transcription-quantitative PCR and western blotting, respectively. For functional assays, human glioma cell lines (HOG, T98G and U251MG) were exposed to increasing concentrations of reversine (0.4-50 µM) and subjected to various cellular and molecular assays. Reversine reduced the viability and clonogenicity in a dose- and/or time-dependent manner in all glioma cells, with HOG (high AURKB-expression) and T98G (high AURKA-expression) cells being more sensitive compared with U251MG cells (low AURKA- and AURKB-expression). Notably, HOG cells presented higher levels of polyploidy, while T98G presented multiple mitotic spindles, which is consistent with the main regulatory functions of AURKB and AURKA, respectively. In molecular assays, reversine reduced AURKA and/or AURKB expression/activity and increased DNA damage and apoptosis markers, but autophagy-related proteins were not modulated. In conclusion, reversine potently induced mitotic catastrophe and apoptosis in glioma cells and higher basal levels of aurora kinases and genes responsive to DNA damage and may predict improved antiglioma responses to the drug. Reversine may be a potential novel drug in the antineoplastic arsenal against gliomas.

15.
Mar Pollut Bull ; 166: 112233, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33740657

RESUMO

This study aimed to assess the biological responses of oysters from an urban estuary in Northeast Brazil, through the evaluation of biochemical and physiological biomarkers, and integrate these responses with the investigation of mercury seasonal contamination. Oysters and sediment were collected from three sites in the estuary of the Ceará River during dry and rainy seasons. Biomarkers (AchE, CaE, GST, CAT, and Condition Index) were analyzed in different tissues. Hg bioaccumulation was higher in animals sampled in the rainy season, with increases varying from 5% to 136%, compared to the dry season. The changes in biomarkers highlight already elevated stresses for the organisms at the inner portion of the estuary, near the confluence with the Maranguapinho River, mainly during the rainy season, corroborating other studies that showed ecotoxicological effects with water and sediment samples. Finally, no correlation between Hg in sediment/oyster and biomarker results was observed.


Assuntos
Crassostrea , Mercúrio , Poluentes Químicos da Água , Animais , Brasil , Monitoramento Ambiental , Estuários , Rios , Poluentes Químicos da Água/toxicidade
16.
Invest New Drugs ; 39(4): 1139-1149, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33475938

RESUMO

Despite the great advances in the understanding of the molecular basis of acute leukemia, very little of this knowledge has been translated into new therapies. Stathmin 1 (STMN1), a phosphoprotein that regulates microtubules dynamics, is highly expressed in acute leukemia cells and promotes cell cycle progression and proliferation. GDP366 has been described as a STMN1 and survivin inhibitor in solid tumors. This study identified structural GDP366 analogs and the cellular and molecular mechanisms underlying their suppressive effects on acute leukemia cellular models. STMN1 mRNA levels were higher in AML and ALL patients, independent of risk stratification (all p < 0.001). Cheminformatics analysis identified three structural GDP366 analogs, with AD80 more potent and effective than GSK2606414 and GW768505A. In acute leukemia cells, GDP366 and AD80 reduced cell viability and autonomous clonal growth in a dose- and/or time-dependent manner (p < 0.05) and induced apoptosis and cell cycle arrest (p < 0.05). At the molecular level, GDP366 and AD80 reduced Ki-67 (a proliferation marker) expression and S6 ribosomal protein (a PI3K/AKT/mTOR effector) phosphorylation, and induced PARP1 (an apoptosis marker) cleavage and γH2AX (a DNA damage marker) expression. GDP366 induced STMN1 phosphorylation and survivin expression, while AD80 reduced survivin and STMN1 expression. GDP366 and AD80 modulated 18 of the 84 cytoskeleton regulators-related genes. These results indicated that GDP366 and AD80 reduced the PI3K/STMN1 axis and had cytotoxic effects in acute leukemia cellular models. Our findings further highlight STMN1-mediated signaling as a putative anticancer target for acute leukemia.


Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adenina/administração & dosagem , Adenina/análogos & derivados , Adenina/farmacologia , Antineoplásicos/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Humanos , Indóis/administração & dosagem , Indóis/farmacologia , Células Jurkat , Leucemia Mieloide Aguda/patologia , Compostos de Fenilureia/administração & dosagem , Compostos de Fenilureia/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Estatmina/genética , Fatores de Tempo , Células U937
17.
Eur J Pharmacol ; 894: 173853, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33422507

RESUMO

Acute promyelocytic leukemia (APL) is associated with PML-RARα oncogene, which is treated using all-trans retinoic acid (ATRA)-based chemotherapy. However, chemoresistance is observed in 20-30% of treated patients and represents a clinical challenge, raising the importance of the development of new therapeutic options. In the present study, the effects of three synthetic cyclopenta[b]indoles on the leukemia phenotype were investigated using NB4 (ATRA-sensitive) and NB4-R2 (ATRA-resistant) cells. Among the tested synthetic cyclopenta[b]indoles, compound 2, which contains a heterocyclic nucleus, was the most active, presenting time-dependent cytotoxic activity in the µM range in APL cells, without cytotoxicity for normal leukocytes, and was selected for further characterization. Compound 2 significantly decreased clonogenicity, increased apoptosis, and caused cell cycle arrest at S and G2/M phases in a drug concentration-dependent manner. Morphological analyses indicated aberrant mitosis and diffuse tubulin staining upon compound 2 exposure, which corroborates cell cycle findings. In the molecular scenario, compound 2 reduced STMN1 expression and activity, and induced PARP1 cleavage and H2AX and CHK2 phosphorylation, and modulated CDKN1A, PMAIP1, GADD45A, and XRCC3 expressions, indicating reduction of cell proliferation, apoptosis, and DNA damage. Moreover, in the in vivo tubulin polymerization assay, NB4 and NB4-R2 cells showed a reduction in the levels of polymerized tubulin upon compound 2 exposure, which indicates tubulin as a target of the drug. Molecular docking supports this hypothesis. Taken together, these data indicated that compound 2 exhibits antileukemic effects through disrupting the microtubule dynamics, identifying a possible novel potential antineoplastic agent for the treatment of ATRA-resistant APL.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/química , Indóis/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Microtúbulos/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Indóis/química , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Modelos Moleculares , Estatmina/biossíntese , Ensaio Tumoral de Célula-Tronco
18.
Environ Res ; 193: 110525, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259786

RESUMO

Sediment dredging impacts coastal environments by promoting the resuspension of fine particles and remobilization of contaminants that may trigger toxic effects. In this study, we evaluated the sediment quality in harbor areas of Mucuripe bay, a semi-arid ecosystem located in Ceará state (Brazil), which is subject to dredging activities. A sampling survey was conducted right after dredging operations and data compared to another survey performed prior dredging. Sediments were analyzed for fine particles, organic carbon, nutrients, metals, hydrocarbons, and tributyltin (TBT). Toxicity of whole-sediment and liquid phase exposures were also determined. The concentrations of Cd, Cr, Cu, and Zn decreased after dredging, which was confirmed by the geoaccumulation index. Levels of TBT dropped while phosphorus, aliphatic and polycyclic aromatic hydrocarbons increased. Toxic effects persisted, indicating a post-dredging recontamination combined with other sources such as urban runoff, wastewater discharges, harbor activities, and antifouling particles. Data from Mucuripe and Pecém harbors were compiled and site-specific sediment quality values (SQVs) were developed by using multivariate methods. The threshold values proposed by our study were lower and more effective to predict toxicity compared to international guidelines, indicating levels of contamination for this tropical region in which toxic effects may occur. Considering the large geographic area with different sediment characteristics of the Brazilian coast, this study represents a significant contribution to sediment toxicity assessment of dredging activities in semi-arid environments.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Brasil , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
19.
Cancer Genet ; 252-253: 6-24, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33340831

RESUMO

Cancer genome instability arises from diverse defects in DNA-repair machinery, which make cancer cells more susceptible to DNA targeting agents. The interrelation between DNA repair deficiency and the increased effect of DNA targeting agents highlights the double-strand break (DSB) repair, which comprises the homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. The DNA targeting agents are classified into two major groups: non-covalent DNA binding agents and covalent DNA-reactive agents. Although these agents have well-known limitations, such as resistance and secondary carcinogenesis risk, they are extremely important in today's real-life cancer therapy in combination with targeted therapy and immunotherapy. Indeed, DNA targeting drugs are promising therapeutics with a precise application through the background of cancer-specific DNA repair failure. In the current review, the mechanisms of action of diversified DNA-targeting agents, as well as the modulation of DNA repair pathways to increase the DNA-damaging drugs efficacy are presented. Finally, DNA-targeting-based therapies are discussed considering risks, resistance and its uses in the medicine precision era.


Assuntos
Antineoplásicos/uso terapêutico , Carcinogênese , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Humanos , Medicina de Precisão , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...